Programming

Unit 3. Basic C

UNIT 3
INTRODUCTION TO PROGRAMMING
IN C

Programming
Grade in Industrial Technology Engineering
2017-18
Paula de Toledo. Maria Paz Sesmero. David Griol

% Universidad
i Carlos Il de Madrid

www.uc3m.es

Unit 3. Basic C

Contents

* Introduction to the C programming language
¢ Basic structure of a program

¢ Variables and constants

* Simple data types

* Strings and structured data types
 Expressions and instructions

* Operators

¢ Input/output: printf and scanf

Unit 3. Basic C 3_I1agnnlmmiﬁ_mgngpi@ de texto del patréon

Algorithm, Program and programming language

* Program

* Set of orders (instructions) written in a given programming
language that are given to a computer to solve a problem
implementing an algorithm

Algorithm Programin C

Ask for number 1 #include <stdio.h>
#include <stdlib.h>

Get number 1 int main (void)
{
float numl,num2, resul;
printf (“Insert first number: \n");

Ask for number 2

Get number 2 - scanf ("$f", &numl) ;

printf (“Insert second number.: \n");
Result € number 1 * number 2 scanf ("S£", snum2) ;

resul=numl*num2;
Show result printf (“result of the sum is %f \n",resul);

return 0;

}
C language

History of C

» Cis closely related to the development of the UNIX operating system at AT&T
Bell Labs

* 1968-1971

* First versions of UNIX

* Unix users write programs in assembly language

» Towards a more appropriate programming language: B, NB (1973)
1971-1972

* Ciscreated (K. Thompson)

» UNIX s rewritten in C; versions of C are developed for other platforms (Honeywell
635, IBM 360/370)

* 1978
» Kernighan and Ritchie
Publication of “The C programming language” book
* Johnson
Development of pcc (portable C compiler)

1989
* Cbecomes standard (ISO/IEC 9899-1990)

* New languages have been developed from C: Objective C, C++, C#, etc.

ANSIC

* Different compilers, development platforms and language
derivations may lead to C code targeted to a specific machine
* E.g.: Win32 graphic libraries

* “Unambiguous and machine-independent definition of the
language C”

* A program in ANSI C must be compiled by any C compiler and
must work in any platform

* ANSI C is a standard subset of the language:
* Well-defined syntax
* Restricted set of functions

* Several specifications: C89/C90, C99, C11

Unit 3. Basic C 1. Introduction to C

Compilation + Linking process in C

\’V

)

mpiler
Compile Object
Source code code
L 7

Linker
Object

L. 7

Object
code

L 7
(o
High-level Low-level Machine
language languages language

—

Programming language

* A programming language is defined by:
 Alphabet
Allowed characters
* Lexicon
Words
* Syntax
Rules for word combination to make meaningful programs

10

C alphabet

* Symbols used in C program
Letters
+ All but ‘ft’ and accents
Numbers
Special characters (&, ", \, ...)

* Cis case sensitive: uppercase and lowercase letters are different

1

Unit 3. Basic C 1. Introduction to C

C lexicon

* The lexicon includes the basic elements to build sentences
* Keywords
Terms with a specific meaning for the compiler
* Lowercase (include, define, main, if, etc.)
* Delimiters
Blank spaces, tabs, line breaks
* Operators
Represent operations: arithmetic, logic, assignment, etc. (+, -, *, etc.)
* Identifiers
* Keywords cannot be used as identifiers
Variable names (user_age) - cannot start with a number
Function names (printf, scanf)
* Literals
Values that do not change:
Numbers: 2, 3.14159
Strings: "Hello world"
Characters: 'a’

12

Unit 3. Basic C 1. Introduction to C

Main components of a program (C or not)

* Data
 Values processed by the program
* perimeter, radius, 9.8

* Expressions
» Combination of operands and operators with a single value as a result
user_age >= 18
3.14159*radius*radius

» Statements/Instructions
* Complete action
area=3.14159*radius*radius;
printf ("Hello world");
int a;

* Blocks or compound statements
* Group of statements
* Braces { }
The statements of the ma in function are enclosed in a block

13

Unit 3. Basic C

Components of a program

=] MyFirstProject - [MyFirstProjectdev] - Dev-C++ 53.0.4 - B
File Edit Search View Project Execute Debug Tools CVS Window Help

RS =EEIE=E BRIEH €€ @ 8008 vd% aa0

(globals) v v

Project | Classes | Debug | main.c

=) MmyFirstProject 1 ude <stdio.h>

@[j main.c 2 Data
3[H int main(void) { 3.14159, radius, area
4 float radius;
5 float area:
&
7 printf("radius? ") ;
8 + _# Expressions
£ 3.14159*radius*radius
10 scanf ("&f", &radius);
11 area = 3.14159 * radius * radius;
12 printf("sf \n", area);
13
14 systen("pause") ;
15 return 0: Instructions
e b} area = 3.14159*radius*radius;
printf(“%f \n”, area);
Blocks

BB compiler | Bl Resources | i Compile Log | & Debug | [B4 Find Resuits

Line: 11 Col: 19 Sel 0 Lines: 16 Length: 256 Insert Done parsing

14

Programming

Unit 3. Basic C

2. BASIC STRUCTURE OF A
PROGRAM

Universidad
Carlos III de Madrid

www.uc3m.es

Unit 3. Basic C 2. Basic structure

Basic C program structure

File inclusion
(preprocessor directive)

#include <stdio.h>

Notice the parentheses ()
and the braces {}

\ Main function:

void = no input data
int = output is int

int main (void) {

return 0;

return O;
Outputis 0

Return is optional,
but recommended

17

Functions < {ERGRRERY

¢ The basic building block in C is the function
* A C program is a collection of functions

* A function is a piece of code that performs a task when it is
called/invoked

Input values >> Output values

* Functions include:
* Data: information used by the function (variable)
¢ Instructions: performing operations

18

Unit 3. Basic C 2. Basic structure

Main function

* All C programs have a main function
» Starting point of the program
Automatically started when the program is run

main function structure
int main(void) {

return 0;

19

Unit 3. Basic C 2. Basic structure

Code reuse and functions - File inclusion

* “Real life” Programming is based in reusing code written by other
programmers -- functions
* C provides libraries with functions that we will use in our programs

e stdio.h library implements input and output functions printf () and
scanf ()

* To use functions you need to add to your program the library file
containing the function code

° #include "file.h" searches for the file in the current folder

* #include <file.h> searches for in the default compiler folder

20

Unit 3. Basic C 2. Basic structure

Pre-processor directives

* In C, the complier calls an auxiliary program before starting
the compilation process itself
* This program is the preprocessor, and does a first code
translation
* It processes the pre-processor directives that start always with
a # (hash symbol)
* Examples
« #include to include function libraries
The preprocessor adds the functions code to our code
+ #define to define constant variables

the preprocessor substitutes the constant name by its value

* Not common in other programming languages, C specifc

21

Unit 3. Basic C 2. Basic structure

Comments

* Comments are notes to the code that are meant for the
programmer and not for the complier
* The compiler ignores comments (they are not real code)
* They can be used at any point of the program

¢ Its very important to comment the code well:

* Make the code readable and understandable

* Although we now know perfectly what a program does, maybe we
will have to reuse it in the future

* Perhaps other programmers reuse our code and need to
understand it

* Itis a good practice to introduce a comment at the beginning of
each file describing what it does

22

Unit 3. Basic C 2. Basic structure

Syntax for comments

* Multi-line comments
e /* :Open comment block
e */ : Close comment block

/* print radius? on the screen */

/* This program solves a
second grade equation. */

* In-line comments
e // : The remainder of the line is considered a comment

printf("%f \n", area); // print area value

23

Programming

Unit 3. Basic C

3. VARIABLES AND CONSTANTS

Unit 3. Basic C 3. Variables and constants

Variables and constants

* Avariable is a container for information processed by the
program

Used to read, use in calculations, write
If the information can change, it’s a variable; otherwise a constant

main.c

#include <stdio.h>

#define PI 3.14159

B int main(void) {

float radius:
float area:

printf({"radius? "):

/* print dins? on the scresn */

scanf ("%f", &radius):
area = PI # radius % radius:
printf ("s$f \n", area):

system ("pause") ;
return 0;

25

Unit 3. Basic C 3. Variables and constants

Features of variables and constants: name, type, value

* Variables and constants have:

Name
* Label or identifier of the variable or constant

* radius, area, PI

Type
* Determines which types of values the variable can take
* Integer number, real number, single letter,...

Value

* Value of the symbol at a given moment
* 2,12.566360

26

Unit 3. Basic C 3. Variables and constants

Variables in memory

* Variables can be seen as a block of memory storing a piece of data
* User-defined name for a group of cells of the memory

* When the name (or identifier) of the variable is used in the
program, the information at the address of the variable is
accessed

* The amount of memory allocated to the variable depends on its
type, which must be set when the variable is declared

513 12.5
514 6636

sio0 []
511 2.00 256 [of1]|ofofofofol1]| A
L2 OG0 257 |of1|1|of1|1f1]0 n

Unit 3. Basic C 3. Variables and constants

Data types -intro

Type Description Size (bytes) Range
int Integer number 2 bytes -32768 to 32767
float Real number wlth simple precision 4 bytes 3.4x10°%8 to 3.4x10%
(7 decimal values)
double Real number with fiouble precision 8 bytes 1.7x1039 to 1.7x10%%
(up to 16 decimal values)
char Alphanumeric characters 1 byte Unsigned: @ to 255

Unit 3. Basic C 3. Variables and constants

Variable declaration

* You need to declare variables before using them

* The declaration instruction allocates a piece of the memory to
store the value of the variable

* In the declaration, we specify:
name of the variable
data type (int, char)

* Syntax
* <data type> <variable name>;

* Examples
float average_mark;
int numl, sum;

char letter;
29

Unit 3. Basic C 3. Variables and constants

Choosing good names for your variables

* Self-explanatory names
* Lowercase
* not too long

counter = counter + 1;
num_registered students = 56;

* Variables are declared at the beginning of the block in which they
are used. They are valid only in this block (scope)!

int main(void) {
int counter;
int radius;

a = 10;
printf ("%i", a);

30

Unit 3. Basic C 3. Variables and constants

Assigning a value to a variable

* Assigning a value to a variable means that the value is stored in the
memory cell allocated to the variable
* a=7;

* If there was a previous value stored on the variable, it is deleted

* The assignment operator is =

* Avariable can be assigned an individual value or the result of
evaluationg an expression

a=3;

X = y;
delta=0.001;
suma=a+b;

* In pseudocode the assignment is represented as €
The variable on the left is assigned the value on the right

31

Unit 3. Basic C 3. Variables and constants

Variable initialization

¢ Initialize means assigning an initial value to a variable
* In the declaration:
*int a=8;
* After the declaration:
*int a;
ca = 8§;
* Multiple declaration/initialization in one line
*1int a, b, c;
*1int a=5, b=4, c=8;
*1int a=1, b, c=a;

* Uninitialized variables have junk values
* We cannot assume that they are 0!!

32

Reading and printing variable values

* Reading (input):
¢ floatradius;

* scanf ("%f", &radius); // gets a value and stores it in radius variable

¢ Printing (output):
* int radius =23;

* printf ("%i", radius); // prints value onto the screen

33

Unit 3. Basic C

3. Variables and constants

Constants

* A C constant is a symbol whose value is set at the beginning of
the program and does not change later

* Two alternatives:
« #define directive

#define <name> <value> Blank space

* #define PI 3.14159

* #define KEY 'a’'

* #define MESSAGE "Press INTRO to continue.."

+ const qualifier to a variable
const <type> <name> = <value>;
° const float PI = 3.14159;
e const char KEY = 'a';
* const char MESSAGE [] = "Press INTRO to continue..";

= instead of blank
Type is specified

* Constant identifiers are usually written in uppercase letters

34

Unit 3. Basic C 3. Variables and constants

Constant declaration with const vs #define

* #define is a preprocessor directive. Before compling the code
the preprocessor substitutes the constant by the value

» Advantages of const versus #define
* The compiler generates more efficient code

* The compiler can check if the type and the assigned value are
compatible

* Advantages of #define versus const

* const values cannot be used in places where the compiler expects
a literal value (e.g., array definition)

37

Unit 3. Basic C 3. Variables and constants

Literals

* Literals are values in our code
 Constants are literals, but specific values too

* nl=5; //literal integer 5
* r1=5.7; // literal float 5.7
* mylIntial="n’; // literal character n

“wonderful day" //literal string of characters

38

Programming

Unit 3. Basic C

4. BASIC DATA TYPES IN C

Unit 3. Basic C 4. Data types

Basic data types in C
Type Description Size (bytes) Range
int Integer number 4 bytes [2211;;1‘;8336?;;?'
Floas | el il ol precion |y | 33210
souse | Felumber it dodlrecion | yiyes | 17510 M
char Alphanumeric characters 1 byte 0 to 255

« Size in bytes may be different in different operating systems and platforms

* Other simple data types
* void
» Pointers

* Modifiers
* int: signed, unsigned
 int: long, short

Integer datatype

° int datatype is used to represent integer values
* int literals
* int variables
° int expressions

* int literals can be expressed with different notations

* Decimal (base 10): 2013
* Octal (base 8): 011 (starting with 0)
* Hexadecimal (base 16): 0x2B (starting with 0x)

* 011 // 1*8+1*1 --> 9
* 0x2B // 2*16+11 —--> 43

42

float and double

* float and double data types are used to represent real
values

* double more precision, but also larger memory size

* The decimal separator for float and double literals is .
* Two options to represent a number

* Regular: 82.3473

* Scientific notation: 2.4E-4

43

Unit 3. Basic C 4. Data types

char type

* char data type is used to represent ASCII characters

* char literals are enclosed in single quotation marks ' '

¢ char letter = 'b';

* printf ("%c", letter);

 Special and escape characters can be used

e char lineBreak = '\n';

44

Unit 3. Basic C 4. Data types

Character coding system ASCII
Binario Dec | Hex | Caracter | Binario Dec | Hex | Caracter | Binario Dec | Hex | Caracter
00100000 | 32 20 £ERECIO 0fo00000 | 64 40 @ 01100000 | 96 60)
00100001 | 33 21 ! 0f000001 | 85 H A 0f100001 | 97 61 a
0010 0010 | 34 22 " 01000010 | 68 42 B 1100010 | 98 62 b
00100044 | 35 23 # ofooooit | 67 43 [0100011 | 99 63 ¢
00100100 | 36 24 3 01000100 | 68 44 D 1100100 | 100 | 64 d
00100101 | 37 25 % 01000101 | 63 45 E 100101 | 101 | 65 @
00100410 | 38 26 & 01000110 | 70 46 F 0110010 | 102 | 66 i
00100444 | 39 27 ' ofooofil | 71 47 G 100141 | 103 | 67]
0010 1000 | 40 28 (0f00 {000 | 72 48 H 01101000 | 104 | 68 h
0010 1004 | 41 29) ofoo foo1 | 73 49 | 0f10 1001 | 105 | 69 i
0010 1040 | 42 2A i 0100 1010 | 74 4A J 101010 | 106 | 6A i
00101044 | 43 2B + ofoo oMl | 75 4B K 0101011 | 107 | 6B k
0010 1100 | 44 2C . 0100 {100 | 76 4C L 01101100 | 108 | 6C |
0010 1101 | 45 2D = ofoo {101 | 77 4D [l 101101 | 109 | 6D m
0010 1110 | 46 2E . ofoo {110 | 78 4E N Of10 110 | 110 | 6E n
0010 1411 | 47 2F / 0foo 1111 | 79 4F (o] ot1o 1111 | 111 | 6F 0
00110000 | 45 30 0 01010000 | 80 50 P 0110000 | 112 | 70 3}
00110001 | 49 31 1 ofofooot | 81 51 Q 0110001 | 113 | 71 q
00110010 | 50 32 2 010010 | 82 52 R 110010 | 114 | 72 r
00110044 | &1 33 3 ofo1ooi1 | 83 53 S off1o0M1 | 115 | 73 s
00110100 | 52 34 4 01010100 | 84 54 T Of110100 | 116 | 74 i
00110101 | 53 E5 B 0101 | 85 E5) u 10101 | 117 | 75 u
00110110 | 54 36 6 ofo1 0110 | 86 56 vV OfH1oNMo | 118 | 76 W
00110444 | 55 37 7 ofo1 o111 | 87 57 W oftH1ont | 118 | 77 W
0011 1000 | 56 38 8 0101 1000 | 88 58 X 11000 | 120 | 78 X
00111004 | 57 39] 0101 1001 | 88 &9 Y Of11 1001 | 121 | 79 ¥
0011 1010 | 58 3A 0101 1010 | 80 54 z 11010 | 122 | 7A z
00111044 | 59 3B 3 ofof 1011 | &1 58 [Off1 1011 | 123 | 7B {
0011 1100 | 60 3C < 0fo1 1100 | 82 5C) Of11 1100 | 124 | 7C |
0011 1101 | &4 3D = 0101 1101 | 83 50 | 11101 | 125 | 7D 1
0011 1110 | 62 3E > ofot 1110 | 24 5E " Of11 110 | 126 | 7E =
0011 1444 | 63 3F ? ofot 1111 | 85 5F -
45

Unit 3. Basic C 4. Data types

Type matching when assigning values

* Assignments can must done between a variable and an expressions
with same type or compatible types

* int <---int

¢ float <--- int adds .0 to the int

¢ int <--- char assigns the ASCII code of the char to the int

* char <--- int assigns the ASCII value coded by the int to the char
¢ int <--- float the decimal part of the float is truncated

int a=5, b;
char c='Z";
float x, y=3.1;
b=a;

X=a;

b=c;

c=a;

b=y;

46

Unit 3. Basic C 4. Data types

Void data type

* void data type is used to indicate that no value is expected in
specific parts of the program
* A function has no parameters
int main(void)
is equivalent to
int main()
* A function does not return any value
void main(void)

* You cant declare a variable to be of void datatype

47

Programming

Unit 3. Basic C

5. STRINGS AND STRUCTURED
DATATYPES

Unit 3. Basic C 5. Strings

Structured data types

* Data can be structured or unstructured
* Unstructured (simple) data types
Symbols with a single element and a single value
* Numbers: integer , float
* Characters: char

* Structured data types
Symbols with an internal structure, not a single element
* Character strings

* Arrays and matrices
Unit 5. Structured data
* Structures

types

50

Unit 3. Basic C 5. Strings

Character strings

* Character strings are used to represent a sequence of
characters

* String literals are enclosed in double quotation marks " "

* String variables and constants are declared as arrays (unit 6):
* char message [] = "Hello world"; // string constant
e char name[100]; // string variable of 100 characters

51

Unit 3. Basic C 5. Strings

Storing strings in memory

* Strings are stored in memory as a strip of characters ending
with the null character '\ 0'

 char myString [8]="Hola";

olilolo]z]ololo] ['H] 72]
ol1l1]o]1]1]2]2] |0 |112
ol1l1]o|1]2]o]o] | |108
ol1]1/olololo]1] [%a'] 97

8 bytes
olololo]ofolo]o] ["\o] o - 8by

52

Unit 3. Basic C 3.5. El tipo string

Using special characters in strings

A C string can contain any ASCII character
¢ Including numbers, and blank spaces

» Some characters that have a specific meaning for C need to be
“marked” by using an escape sequence
¢ This tells the compiler that the character coming next has to be
dealt with in a special way
¢ In C the escape sequence is the \
* Example: “

With no escape sequence the compiler would interpret this is the end
of the string

Use \” instead
Char greeting [] = “He said \"Hello \"”

54

Programming

Unit 3. Basic C

6. EXPRESSIONS AND
INSTRUCTIONS

Unit 3. Basic C 6. Expressions and instructions

Expresion

* An expression is a combination of data by means of one or
several operators

* Data can be literal values, variables, constants, and other
expressions
Even calls to functions

* Data in an expression are called operands

| operator _|
[operand | [operand]

a+b

* Expression composition is guided by rules
* Each operation can only operate on operands of a given data type

56

Unit 3. Basic C 6. Expressions and instructions

Types of operators

* Arithmetic: i.e. sum +
e 7+3+4.5;
* numl+num?2;

* Relational: : i.e. “greater than" >
e 7>3;

°* numl>num2;

* Logical: i.e. and
* (pin =pin_ok) and (attempts < 3)

57

Unit 3. Basic C 6. Expressions and instructions

Expression: examples

« Examples [maine x|

#include <stdio.h>
*a+b #define PI 3.14159

e X == y [Hint main (void) {
float radius;

* X<= y float area;

printf ("radius? ");
Scan: » -

area-[= PI*radius*radius; l
pPrintip T

system("pause"”);
return 0;

58

Unit 3. Basic C 6. Expressions and instructions

Instructions or statements

* Orders of the program to accomplish a task
applied on operators and expressions

* Types
* According to the function
Declaration
int a;
Assignment
a=>5;
Input and output
printf, scanf
Control
if, while,

59

Unit 3. Basic C 6. Expressions and instructions

Instruction examples

#include <stdio.h> Variable declaration
define PI 3.14
int main (wvoid)
{

float radius;

printf ("radius=?"); Input

scanf ("%f", &radius) ;

area = PI* radius * radius: J

printf ("$f", area); Assign result of the
return 0; expression

Output value

60

Programming

Unit 3. Basic C

7. OPERATORS

Unit 3. Basic C 7. Operators

Arithmetic operators
+ Addition
- Substraction
* Multiplication
/ Division
% Remainder or Module

* Operands are numbers (int, float, double) and the result is a number

 Datatype of the result depends on datatype of operands

* The % operator requires two integer operands, being the second
one different to 0

* The / requires the second operand to be different to 0.

* When both operands are integers, the result is also an integer value (no
decimals!)

Unit 3. Basic C 7. Operators

Datatype of the result : integer division

#include <stdio.h> integer divided hy integer igned to integer 3
3.500000

int main (void) {

3
3.500000
integer divided by integer , assigned to float 3.

int nl=7, n2=2, n3;
float rl=7, r2=2, r3;

printf ("integer divided by integer, assigned to integer \t");
n3=nl/n2;
printf ("%i \n", n3);

printf ("float divided by float, assigned to float \t");
r3=rl/r2;
printf ("%f \n", r3);

printf ("float divided by integer , assigned to integer \t");
n3=rl/n2;
printf ("%i \n", n3);

printf ("float divided by integer , assigned to float \t");
r3=rl/n2;
printf ("%$f \n", r3);

printf ("integer divided by integer , assigned to float \t");
r3=nl/n2;
printf ("%f \n", r3);

system ("PAUSE");
return 0;

Unit 3. Basic C 7. Operators

Power and square root

* There is no C operator for power and square root
¢ Library functions are used
* pow y sqgrt,inLibrarymath.h

2 elevado a 3 es 8
La raiz cuadrada de 16 es 4
Presione una tecla para continuar . . .

#include <stdio.h>
#include <math.h>

int main (void){
int result;

result=pow(2,3);
printf ("2 to the power of 3 is %i \n", result);

result=sqrt(16);
printf (“16 squared is %i\n", result);

system ("PAUSE");
return 0;

64

Unit 3. Basic C 7. Operators

Logical operators: AND OR NOT

* Operate on logic (boolean) operators or expressions
* Logic operators: operators whose value can be ‘true’ or false’

e Truth tables

Negation is a unary
operator —only one
operand

conjunction : AND disjunction : OR Negation : NOT

Operands

66

Unit 3. Basic C 7. Operators

Logical operators in C &&: AND
In C - false is 0 and true is
and &&

anything else - typically 1
or [In other languages there may
be specific boolean types

not !

Examples:
To pass the lecture, exam and lab parts

must be passed
Pass = Pass_Exer AND Pass_Lab

I :NOT
To pass the lecture, at least one of the parts
needs to be passed n
Pass = Pass_Exer OR Pass_Lab

67

Unit 3. Basic C

Practice with logical expressions

* Write an expresion that is true in this case
* access to disco
Older than 18 and has 20 euros for the ticket
* access to disco - 80’s version
Older than 18 and has 20 euros for the ticket or is a girl
* access to disco

Anyone can enter provided that number of people smaller than
maximum capacity

* Block the cell phone

Entered pin not correct and number of attempts 3 or more
* Three numbers for an ascending sequence

numl > num2 >num3
* Pass the course

Exam is passed (mark >5) or mean exam and continuous asessment
is greater than 5, and student had not been expelled

68

Unit 3. Basic C

Practice with logical expressions(1I)

* Write an expression that is false if
* Give a parking fine
Payment issued and within time limt or has special residents parking
permit
* Leave the country

valid passport (not expired) and no arrest warrant (search order by
the police)

Unit 3. Basic C 7. Operators

Relational operators

* The result of relational operators is a boolean value
e false: 0, true 1

Operator Operation

< Less than

<= Less or equal than
> Larger than

>= Larger or equal than
== Equals

= Different from

Unit 3. Basic C 7. Operators

Precedence rules for operators

* Conventions about which procedures to perform first in order
to evaluate a given expression

ca+b>c||c<0
* Precedence rules are similar in all programming languages

* Where it is desired to override the precedence conventions, or
just for clarity, parenthesis are used

* Expressions enclosed with parenthesis are evaluated first, from
the inner-most to the outer-most

((@+b)>c)||(c<0)

73

Unit 3. Basic C

Operator precedence order in C

Unary ! NOT (negacidn légica) 'a

++ Increment ++a

- Decrement --a

= Sign change -b

* Indirection *p

& Address &a
Multiplication * Multiplication a*b

/ Division a/b

% Module a%b
Addition + Addition atb

- Substraction a-b
Relational < Less than a<b

<= Less or equal than a<=b

> Larger than a>b

>= Larger or equal than a>=b
Equality = Equals to a ==b

I= Different to al!l=b
Logic && AND a && b

Il OR allb
Assignment = assignment a=>b

 Expressions with operators of the same category are evaluated

from left to right 24

Programming

Unit 3. Basic C

8. INPUT AND OUTPUT:
PRINTF AND SCANF

Unit 3. Basic C 8. Input and output

Input and output instructions

* Programs interact with the user through input and output data
* Standard input : keyboard
» Standard output : screen
* Other options: read from and print to file

¢ Input and output (I/0) instructions allow programs to read
and display data
* C does not have input/output instructions
¢ Library functions printf and scanf instead
¢ include the library where printf and scanf are declared
#include <stdio.h>

7

Unit 3. Basic C 8. Input and output

printf: print formatted

* Sends formatted output to the standard output stream
(screen)
* Syntax
¢ printf ("format string", arguments)
The format string has two components: text and identifiers

The number of identifiers has to match the number of arguments to
print

printf (“Hello!, %s\tYou are %i, you are %f mts. tall\n", name,age,height);

printf ("Your suwth asc. ", . \
printf (“Bye\n") ;

List of argument

Format string

Hello!,Sara You are 21, you are 1.680000 mts. tall

Your surname starts with a P. Bye

Unit 3. Basic C 8. Input and output

Conversion specifiers (simplified version)

* Set the format to be used for printing data

Specifier Format

%l Integer (int)

%f real (float), decimal notation

%c character

%s character string

%d Integer, decimal format - same as %i

printf ("number: %i \n", 2013); // 2013
printf ("number: %i \n", -2013); // -2013
printf ("number: %f \n", 82.3473); // 82.34730
printf ("number: %f \n", 2.4E-4); // 0.000240

Unit 3. Basic C 8. Input and output

Format modifiers

$[flags] [width] [.precision]<type>

* Used to modify how data are displayed
* Flags
e -:left-aligns the output
* Field Width
* Minimum size in characters of the output (pads if necessary)
* Default width depends on the datatype
* If this size is not big enough, this setting is overriden (ignored)
* Precision
* In a string, maximum number of characters to plot

* In float or double: decimals used to represent the number
(rounds if necessary)

80

Unit 3. Basic C 8. Input and output

Format modifier examples

$[flags] [width] [.precision]<type>

* 05.2f
Float using at least 5 spaces and two decimals

printf ("%5.2f", 3.0); .Inn

* %-5.2i
Integer, aligned to the left, using 5 spaces and 2 figures

printf ("%-5.21i", 3); n...

81

How to print special characters

° i
* printf (“Feliz a%co ",164);
%c format descriptor for char

fi = ascii code 164

* Characters that need escape sequence

\! single quotes ~ printf("\'");
\" double quotes printf ("\"");
AN\ backslash printf ("\\");

* Special printable characters
\n end ofline
\t tabulator
\b backspace

82

Unit 3. Basic C 8. Input and output

Read data with format: scanf

* scanf() Reads information from the standard input channel
* Syntax

* scanf(“format string", arguments)

scanf (“%i”", &age)
* The argument is the address of the variable,
* & indicates address
* More than one variable can be read in the same scanf instruction

int n;
float mark;

printf ("Enter student id and mark:\n");
scanf ("%i %f", & n, & mark);
printf ("\n The mark of the student %i is %f\n", n, mark);

83

Reading and printing strings

* scanf("%s", string_variable);

Reads chars from the keyboard to form a string

NO NEED TO ADD &
* A string is a type of array

* In an array (unit 6) the name of the array contains the address of
the variable

char name[100];
scanf("%s", name);

¢ printf(“%s”, string_variable);

84

Unit 3. Basic C 8. Input and output

Reading strings containing blank spaces

* scanf %s stops reading when it finds a blank space
* scanf("%s", name);

* Miguel de Cervantes
¢ printf("Hello %s", name);
* Hello Miguel

* To read a string including blank spaces we use a special format
specifier

-+ scanf ("%0 [A \n] ", name);

* %]["\n] means that scanf reads until a line break character is
found

85

Unit 3. Basic C 8. Input and output

Reading characters with scanf

* Try this code

))) > %i and %f take any input from the

int main(void) input channel (buffer) and empty

{
char c: the buffer

. * Conversely %c takes one char but
printf("Input No.1\n"); ¢
scanf (%", &c): doesen’t empty tl.1e buf.fer
printf("c = %c\n",); * The “enter” char is left in the buffer
. " * Next scan instruction will read the

printf("Input No.2\n"); ,) :
scanf("%c", &) ; enter’ left over in the buffer
printf("c = %c\n", ©; * What you will notice is that the
printfC"Input No.3\n"): second. scan 1nst1.'uct10n is skipped
scanf("%c", &c); ¢ The third scan will take the second
printf("c = %c\n",); character
return 0;

}

86

Unit 3. Basic C 8. Input and output

Reading chars with scanf

* Integers vs chars in scanf

* When reading a number, everything in the buffer that can’t be
converted to a number is disregarded (blank spaces,...)

* When chars are read, anything will be formated as a char

* How to avoid this
* Use format descriptor " %c"
NOTICE leading blank space

* This changes the format so that blank spaces and enter are
skipped

87

Unit 3. Basic C 8. Input and output

Conversion specifiers (detailed list)

%i Integer (int)
%f real (float), decimal notation
%e real (float), scientific notation
%lIf Long float (double)
%c character
%s character string
%d Integer, decimal format - same as %i
%0 Integer, octal
%x Integer, hexadecimal
%p pointer (memory address stored in the pointer)

%/ [~\n] Only for scanf. String including blanks

" %c" Only for scanf. Characters excluding blanks and enter
88

Programming

Unit 3. Basic C

UNIT 3
INTRODUCTION TO PROGRAMMING
IN C

Programming
Grade in Industrial Technology Engineering
2017-18

Paula de Toledo. Maria Paz Sesmero. David Griol

Universidad
Carlos III de Madrid

www.uc3m.es

